Product Description

 

Product Description

Plastic injection molds and mould manufacturer

1-Start from part design analysis

2-Mold design drawing and DFM report available so you can see how is the mold going to be before mold making
3-If product is complex,moldflow report will be present as well
4-In house mold making shop ensure you mold quality under well control.
5-Normally it takes 15-25 working days to make mold,precise time depends on part design

 

Product Description

ODM plastic injection molding

Plastic Materials:

PS, ABS, PP, PVC, PMMA, PBT, PC, POM, PA66, PA6, PBT+GF, PC/ABS, PEEK, HDPE, TPU, PET, PPO,…etc.

Standard:

ISO9001:2008

Other materials:

Rubber, Slilconce rubber, LSR,Aluminum, Zinc,Copper…Metal…etc.

Quality:

RoSH and SGS standard

Feature:

Non marking and Non flash

Size:

According to your 2D, 3D Drawing

Color,Quantity,Unit price,Tooling cost,Tooling size:

To be discussed

Package:

Standard exported Wooden box packed, Fumigation process(upon required)

Mold Building Lead Time:

T1, 15-25 Working days, Part measurement report (upon required).

Export Country:

Europe, Japan, America, Australian, UK, Canada, France, Germany, Italy…etc.:

Experience:

13 years experience in plastic injection mold making and plastic prouducts produce.

To be discussed

In-Mold Decoration, Injection Mould, Plastic Mold, Overmould, 2K Mould, Die-Casting Mould, Thermoset Mold, Stack Mold, Interchangeable Mold,Collapsible Core Mold, Die Sets, Compression Mold, Cold Runner System LSR Mold,…etc.

Mould Base:

Hasco Standard, European Standard, World Standard

Mould Base Material:

LKM, FUTA, HASCO, DME,…etc. Or as per Customer’s Requirment.

Surface Finish:

Texture(MT standard), High gloss polishing

Cavity/Core Steel:

P20, 2311, H13, 2344, Starvax 420, 236, AdC3, S136, 2312, 2379, 2316, 2083, Nak80, 2767 …etc.

Hot/ Cold Runner

HUSKY, INCOE, YDDO, HASCO, DME, MoldMaster, Masterflow, Mastip, ZheJiang made brand…etc.

Mould Life:

5,000 to 1,000,000 Shots. (According to your working environment.)

Design & Program Softwares:

CAD, CAM, CAE, Pro-E, UG, Soild works, Moldflow, CATIA….etc.

Equipments:

High speed CNC, Standard CNC, EDM, Wire Cutting, WEDM, Grinder, Plastic Injection Molding Machine for trial out mold from 50-3000T available.

Detailed Photos

 

 

How to Start

 

 

Company Profile

CEMAL Enginnering , professional plastic mold manufacturer in China, we focus on design and manufacturing plastic molds for

the Automotive, Home Appliances and other sectors.

Excited and ready to help support your project from the early stages of part development and tool design to fabrication and parts production via professional engineering, manufacturing, and project management, we are confident that our service level is second to none.

When you choose CEMAL- whether it’s for a single part, a small run or a multi-year contract – you’ll get the same attention to detail, the same problem-solving approach, the same quality solution. That’s the CEMAL promise.

Making our customers satisfying, Keeping our customer successful is the goal of CEMAL.

Why Choose CEMAL
Are you plHangZhou to get a supply of custom injection molds and probably do not have an idea of which Company is likely to offer effective products? If yes, then this article will be a perfect guide for you as it tries to highlight various reasons as to why you should choose Loxin mold as your supplier in injection molds. There are thousands of injection mold manufactures in China and therefore, determining the ideal company to partner with can quite be difficult. Not all factories offer genuine products or even provide the various services at affordable prices and there is thus the need to be careful on the company that you settle for. CEMAL mold has been in existence for more than 10 years now and has proved to be the leading producer of the custom injection mold through the exemplary services to the various customers. It would thus be a wise choice to consider us as your partner in supply of mold related products. Below are some of the reasons as to why you should consider our company

All products are availed at affordable prices
At CEMAL mold, all manufacturing process is done within the company and nothing is ordered from other companies and hence ensuring that all products are traded at the factory price to the various customers. We do not supply our products through any middle persons but rather directly to our clients. Brokers usually charge higher prices on the products in order to get their profits and therefore that is why we avail all products directly to the users to avoid such costs and hence avail the products at affordable prices to our clients.

Highly experienced in production of mold
As mentioned earlier on, CEMAL mold has been in operation for more than 10 years and therefore has efficient knowledge in production of molds and the related services to out esteemed customers. We have transacted with various customers even in the European countries and have always given a positive feedback on our services. If you still don’t believe in us then you can refer from your country on the kind of services offered. We can even provide contacts of the various clients served if they allow us to do so.

Quality services are offered
Our engineers are highly skilled and you can be sure that they offer quality services that meet our customer’s satisfaction. Our main goal is to ensure that all clients are fully satisfied in the mold injection services offered and the company is always ready to even make any changes to meet the customer demands. Our managers are friendly and communicate directly to you if you need a supply of our products without involving any intermediaries. This is in contrast to other manufactures who hire sales ladies to promote the products as they pay them on a commission basis. This calls for more costs as the amount is later transferred to the price of the products

 

FAQ

1. Are you a trading company or a manufacturer?

We are a manufacturer as you can see our workshop as above.

 

2. What kind of trade terms can you do?

 

EX-WORKS,FOB,CIF,DDP DDU

 

3. What is your terms of payment?

 

50% Mold cost deposit,balance mold cost +50% production cost paid when samples confimed,Balance production cost paid against copy of B/L. We accept T/T

 

4. Do you support OEM ?

 

Yes, we can produce by technical drawings or samples.

 

5. How about your delivery time?

 

Generally, it take 20-30 working days ( 15-20days make mold, 5-10 days for mass production).

 

Warranty: 3 Year
Shaping Mode: Injection Mould
Surface Finish Process: Polishing
Mould Cavity: Multi Cavity
Plastic Material: ABS, POM, PP, PC, PE, PA
Process Combination Type: Compound Die
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

What is the impact of material selection on the performance and durability of injection molded parts?

The material selection for injection molded parts has a significant impact on their performance and durability. The choice of material influences various key factors, including mechanical properties, chemical resistance, thermal stability, dimensional stability, and overall part functionality. Here’s a detailed explanation of the impact of material selection on the performance and durability of injection molded parts:

Mechanical Properties:

The mechanical properties of the material directly affect the part’s strength, stiffness, impact resistance, and fatigue life. Different materials exhibit varying levels of tensile strength, flexural strength, modulus of elasticity, and elongation at break. The selection of a material with appropriate mechanical properties ensures that the injection molded part can withstand the applied forces, vibrations, and operational stresses without failure or deformation.

Chemical Resistance:

The material’s resistance to chemicals and solvents is crucial in applications where the part comes into contact with aggressive substances. Certain materials, such as engineering thermoplastics like ABS (Acrylonitrile Butadiene Styrene) or PEEK (Polyether Ether Ketone), exhibit excellent chemical resistance. Choosing a material with the appropriate chemical resistance ensures that the injection molded part maintains its integrity and functionality when exposed to specific chemicals or environments.

Thermal Stability:

The thermal stability of the material is essential in applications that involve exposure to high temperatures or thermal cycling. Different materials have varying melting points, glass transition temperatures, and heat deflection temperatures. Selecting a material with suitable thermal stability ensures that the injection molded part can withstand the anticipated temperature variations without dimensional changes, warping, or degradation of mechanical properties.

Dimensional Stability:

The dimensional stability of the material is critical in applications where precise tolerances and dimensional accuracy are required. Some materials, such as engineering thermoplastics or filled polymers, exhibit lower coefficients of thermal expansion, minimizing the part’s dimensional changes with temperature variations. Choosing a material with good dimensional stability helps ensure that the injection molded part maintains its shape, size, and critical dimensions over a wide range of operating temperatures.

Part Functionality:

The material selection directly impacts the functionality and performance of the injection molded part. Different materials offer unique properties that can be tailored to meet specific application requirements. For example, materials like polycarbonate (PC) or polypropylene (PP) offer excellent transparency, making them suitable for applications requiring optical clarity, while materials like polyamide (PA) or polyoxymethylene (POM) provide low friction and wear resistance, making them suitable for moving or sliding parts.

Cycle Time and Processability:

The material selection can also affect the cycle time and processability of injection molding. Different materials have different melt viscosities and flow characteristics, which influence the filling and cooling times during the molding process. Materials with good flow properties can fill complex mold geometries more easily, reducing the cycle time and improving productivity. It’s important to select a material that can be effectively processed using the available injection molding equipment and techniques.

Cost Considerations:

The material selection also impacts the overall cost of the injection molded part. Different materials have varying costs, and selecting the most suitable material involves considering factors such as material availability, tooling requirements, processing conditions, and the desired performance characteristics. Balancing the performance requirements with cost considerations is crucial in achieving an optimal material selection that meets the performance and durability requirements within the budget constraints.

Overall, material selection plays a critical role in determining the performance, durability, and functionality of injection molded parts. Careful consideration of mechanical properties, chemical resistance, thermal stability, dimensional stability, part functionality, cycle time, processability, and cost factors helps ensure that the chosen material meets the specific application requirements and delivers the desired performance and durability over the part’s intended service life.

What is the role of design software and CAD/CAM technology in optimizing injection molded parts?

Design software and CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) technology play a crucial role in optimizing injection molded parts. They provide powerful tools and capabilities that enable designers and engineers to improve the efficiency, functionality, and quality of the parts. Here’s a detailed explanation of the role of design software and CAD/CAM technology in optimizing injection molded parts:

1. Design Visualization and Validation:

Design software and CAD tools allow designers to create 3D models of injection molded parts, providing a visual representation of the product before manufacturing. These tools enable designers to validate and optimize the part design by simulating its behavior under various conditions, such as stress analysis, fluid flow, or thermal performance. This visualization and validation process help identify potential issues or areas for improvement, leading to optimized part designs.

2. Design Optimization:

Design software and CAD/CAM technology provide powerful optimization tools that enable designers to refine and improve the performance of injection molded parts. These tools include features such as parametric modeling, shape optimization, and topology optimization. Parametric modeling allows for quick iteration and exploration of design variations, while shape and topology optimization algorithms help identify the most efficient and lightweight designs that meet the required functional and structural criteria.

3. Mold Design:

Design software and CAD/CAM technology are instrumental in the design of injection molds used to produce the molded parts. Mold design involves creating the 3D geometry of the mold components, such as the core, cavity, runner system, and cooling channels. CAD/CAM tools provide specialized features for mold design, including mold flow analysis, which simulates the injection molding process to optimize mold filling, cooling, and part ejection. This ensures the production of high-quality parts with minimal defects and cycle time.

4. Design for Manufacturability:

Design software and CAD/CAM technology facilitate the implementation of Design for Manufacturability (DFM) principles in the design process. DFM focuses on designing parts that are optimized for efficient and cost-effective manufacturing. CAD tools provide features that help identify and address potential manufacturing issues early in the design stage, such as draft angles, wall thickness variations, or parting line considerations. By considering manufacturing constraints during the design phase, injection molded parts can be optimized for improved manufacturability, reduced production costs, and shorter lead times.

5. Prototyping and Iterative Design:

Design software and CAD/CAM technology enable the rapid prototyping of injection molded parts through techniques such as 3D printing or CNC machining. This allows designers to physically test and evaluate the functionality, fit, and aesthetics of the parts before committing to mass production. CAD/CAM tools support iterative design processes by facilitating quick modifications and adjustments based on prototyping feedback, resulting in optimized part designs and reduced development cycles.

6. Collaboration and Communication:

Design software and CAD/CAM technology provide a platform for collaboration and communication among designers, engineers, and other stakeholders involved in the development of injection molded parts. These tools allow for easy sharing, reviewing, and commenting on designs, ensuring effective collaboration and streamlining the decision-making process. By facilitating clear communication and feedback exchange, design software and CAD/CAM technology contribute to optimized part designs and efficient development workflows.

7. Documentation and Manufacturing Instructions:

Design software and CAD/CAM technology assist in generating comprehensive documentation and manufacturing instructions for the production of injection molded parts. These tools enable the creation of detailed drawings, specifications, and assembly instructions that guide the manufacturing process. Accurate and well-documented designs help ensure consistency, quality, and repeatability in the production of injection molded parts.

Overall, design software and CAD/CAM technology are instrumental in optimizing injection molded parts. They enable designers and engineers to visualize, validate, optimize, and communicate designs, leading to improved part performance, manufacturability, and overall quality.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

China factory CHINAMFG of Sports Equipment Plastic Injection Molded Parts  China factory CHINAMFG of Sports Equipment Plastic Injection Molded Parts
editor by CX 2023-12-02