Product Description

Product Description

High quality metal and nylon gear rack for sliding gate

1. This standard racks are for gate automation, used for sliding gate.
2. Surface Galvanized.
3. Size: 8*30*1005mm, 10*30*1005mm, 12*30*1005mm

Product Name

High quality metal and nylon gear rack for sliding gate

Material

Steel A3

surface treatment

Galvanized

Standard

ISO

Teeth number 

according to requirement

keyway 

avaible

screw hole

according to requirement.

Application

Gate automation

Specification

M4; 8*30*1005mm, 10*30*1005mm, 12*30*1005mm

Gear Rack Type

Specification

Color

Straight gear rack

M1 15x15x1000mm

Black

M1.5 17x17x1000mm

White

M2 20x20x1000mm

White

Helical gear rack

M1.5 17x17x1000mm

White

M1.5 20x20x1000mm

White

M2 24x24x1000mm

White

 

Product Parameters

Packaging & Shipping

Packing Details  : Packing, CHINAMFG bicycle saddle, 50pcs/carton
Delivery Details : 3-30 days after order of CHINAMFG bicycle tire tubes

Company Profile

About Mighty Machinery

ZheJiang Mighty Machinery Co., Ltd., specializes in manufacturing Mechanical Power Transmission Products. After over 13 years hard work, MIGHTY have already get the certificate of ISO9001:2000 and become a holding company for 3 manufacturing factories. 

 

Main Products:

Timing belt pulleys, timing bars, timing belt clamping plates.

Locking elements and shrink discs: could be alternative for Ringfeder, Sati, Chiaravalli, BEA, KBK, Tollok, etc.

V belt pulleys and taper lock bush.

Sprockets, idler, and plate wheels.

Gears and racks: spur gear, helical gear, bevel gear, worm gear, gear rack.

Shaft couplings: miniature coupling, curved tooth coupling, chain coupling, HRC coupling, NM coupling, FCL coupling, GE coupling, rigid and flexible coupling, jaw coupling, disc coupling, multi-beam coupling, universal joint, torque limiter, shaft collars.

Forging, Casting, Stamping Parts.
Other customized power transmission products and Machining Parts (OEM).

FAQ

Q: Are you trading company or manufacturer ?A: We are factory.

Q: How long is your delivery time?A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?A: Payment=1000USD, 30% T/T in advance ,balance before shippment.
If you have another question, pls feel free to contact us as below:

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Oil-Resistant, Corrosion-Resistant, High Temperature-Resistance
Application: Conveyer Equipment
Material: Nylon/Plastic/POM
Warranty: 6 Months
Product Name: Nylon Sliding Gate Gear Rack
Samples:
US$ 2.87/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic gear rack

How do plastic gear racks handle different load capacities and forces?

Plastic gear racks are designed to handle different load capacities and forces, and their performance is influenced by several factors. Here’s a detailed explanation of how plastic gear racks handle varying load capacities and forces:

  • Material Selection: The choice of plastic material is crucial in determining the load capacity and force handling capabilities of gear racks. Different plastics offer varying levels of strength, stiffness, and toughness. Plastics like nylon and polyacetal (POM) are commonly used for gear rack manufacturing due to their high strength and durability. These materials can handle substantial loads and forces without deformation or failure. The specific plastic material should be selected based on the anticipated load requirements and the desired mechanical properties.
  • Design Considerations: The design of plastic gear racks plays a crucial role in their ability to handle different loads and forces. Factors such as the tooth profile, module, pitch, and width of the gear rack are important considerations. A well-designed gear rack will distribute the load evenly across the teeth, minimizing stress concentrations and enhancing the load-carrying capacity. Additionally, optimizing the gear rack’s dimensions and geometry can help improve its resistance to bending, shearing, and other forces.
  • Tooth Geometry and Profile: The tooth geometry and profile of plastic gear racks have a significant impact on their ability to handle loads and forces. Different tooth profiles, such as straight or helical, affect the contact area and distribution of forces along the gear rack. Helical gear racks, for example, offer increased tooth engagement and a higher load capacity compared to straight gear racks. The selection of the appropriate tooth profile depends on factors such as the magnitude and direction of the forces, desired load distribution, and noise considerations.
  • Lubrication and Wear: Proper lubrication is essential for plastic gear racks to handle loads and forces effectively. While certain plastics, such as nylon and polyacetal (POM), exhibit self-lubricating properties, additional lubrication may be required in high-load or high-speed applications to reduce friction and wear. Lubrication helps minimize the heat generated due to friction, reduces surface wear, and improves the overall efficiency and lifespan of the gear rack. The choice of appropriate lubricants and maintenance practices is crucial to ensuring optimal performance.
  • Operating Conditions: The operating conditions, including the speed, temperature, and environment, can affect the load capacity and force handling capabilities of plastic gear racks. Elevated temperatures can reduce the strength and dimensional stability of certain plastics, potentially affecting their load-carrying capacity. Similarly, high-speed applications may require additional considerations for heat dissipation and dynamic forces. Understanding the specific operating conditions and selecting a plastic material that can withstand them is vital for ensuring the gear rack’s performance.

It’s important to note that the load capacity and force handling capabilities of plastic gear racks have limits. Exceeding these limits can lead to premature wear, deformation, or failure. It is recommended to consult the manufacturer’s guidelines, consider the application requirements, and perform appropriate calculations or simulations to determine the suitability of a plastic gear rack for a specific load or force scenario.

plastic gear rack

Can plastic gear racks be integrated into medical equipment for linear motion?

Yes, plastic gear racks can be successfully integrated into medical equipment for linear motion applications, offering several advantages in this specific context. Here’s a detailed explanation of why plastic gear racks are suitable for use in medical equipment:

  • Biocompatibility: Plastic gear racks can be manufactured using biocompatible materials that are safe for use in medical applications. These materials are specifically formulated to be compatible with the human body and do not cause adverse reactions or toxicity. Biocompatible plastic gear racks ensure the highest level of patient safety when integrated into medical equipment.
  • Low Friction and Smooth Operation: Plastic gear racks exhibit low friction characteristics, resulting in smooth and precise linear motion in medical equipment. The smooth operation is crucial in applications where accuracy and precision are required, such as in medical imaging devices, robotic surgery systems, or patient positioning equipment.
  • Noise Reduction: Plastic gear racks offer quieter operation compared to metal gear racks. The non-metallic construction of plastic gear racks helps dampen vibrations and noise transmission, contributing to a quieter working environment in medical settings where noise reduction is essential for patient comfort and the concentration of medical professionals.
  • Chemical Resistance: Plastic gear racks can be manufactured from materials that offer excellent resistance to a wide range of chemicals and disinfectants. In medical equipment where frequent cleaning and sterilization are necessary, plastic gear racks can withstand exposure to cleaning agents and disinfectants without degrading or suffering from corrosion. This chemical resistance ensures the longevity and reliability of the gear rack in medical environments.
  • Lightweight: Plastic gear racks are generally lighter in weight compared to metal gear racks. The lightweight nature of plastic gear racks simplifies the design and construction of medical equipment, reduces the load on support structures, and allows for easier handling and maneuverability. It is particularly advantageous in portable medical devices or equipment that requires frequent repositioning or transportation.
  • Design Flexibility: Plastic gear racks can be molded into various shapes and sizes, offering design flexibility for integration into different types of medical equipment. They can be customized to meet specific application requirements, including load capacity, dimensional constraints, and compatibility with other components. Plastic gear racks can be designed to fit seamlessly into the overall system, optimizing performance and functionality.

When integrating plastic gear racks into medical equipment, it’s important to select materials that meet the necessary regulatory standards and have been tested for biocompatibility. Consulting with gear rack manufacturers or suppliers who specialize in medical-grade plastics can ensure the appropriate selection of plastic gear racks that meet the specific requirements of medical equipment for linear motion.

plastic gear rack

How does the choice of plastic material affect the performance of gear racks?

The choice of plastic material significantly impacts the performance of gear racks. Different plastic materials offer distinct properties and characteristics that can affect various aspects of gear rack performance. Here’s a detailed explanation of how the choice of plastic material affects the performance of gear racks:

  • Strength and Durability: The selected plastic material determines the strength and durability of the gear rack. Plastics like nylon and polyacetal (POM) are known for their high strength and toughness, enabling gear racks to withstand heavy loads and repetitive motion without deformation or failure. The choice of a suitable plastic with adequate strength is crucial to ensure the gear rack can handle the intended application requirements and operating conditions.
  • Wear Resistance: Different plastics exhibit varying levels of wear resistance. Nylon and polyacetal gear racks have excellent wear resistance, making them suitable for applications with high contact forces and frequent sliding motion. The wear resistance of the plastic material affects the longevity and reliability of the gear rack, reducing the need for frequent replacements or maintenance.
  • Friction and Lubrication: The choice of plastic material can influence the friction characteristics of the gear rack. Certain plastics, such as nylon, have inherent low friction properties, reducing the power loss and heat generation during operation. Some plastics, like nylon and polyacetal, also exhibit self-lubricating properties, minimizing the need for external lubrication and ensuring smooth and efficient motion.
  • Chemical Resistance: Different plastics offer varying levels of chemical resistance. Some plastics, like polyethylene (PE) and polypropylene (PP), have good chemical resistance, making them suitable for environments where exposure to chemicals or solvents is common. The choice of a chemically resistant plastic ensures that the gear rack remains unaffected by corrosive substances, maintaining its structural integrity and performance over time.
  • Temperature Resistance: Plastics have different temperature resistance capabilities. High-performance plastics like polycarbonate (PC) and polyphenylene sulfide (PPS) offer excellent heat resistance, making them suitable for applications where elevated temperatures are present. Choosing a plastic material that can withstand the anticipated temperature range ensures that the gear rack maintains its dimensional stability and mechanical properties under varying thermal conditions.
  • Weight and Inertia: The choice of plastic material affects the weight and inertia of the gear rack. Plastics like nylon and polyacetal have low density, resulting in lightweight gear racks. Reduced weight minimizes the inertia and allows for faster acceleration, deceleration, and overall improved dynamic performance. Lighter gear racks also contribute to energy efficiency and ease of handling during installation or maintenance.
  • Noise and Vibration: The selection of plastic material can influence the noise and vibration levels of the gear rack during operation. Certain plastics, such as nylon, have inherent damping properties that help reduce noise and vibration. By choosing a plastic material with good vibration absorption characteristics, gear racks can operate more quietly, minimizing disturbances and improving user comfort.

It’s important to consider the specific requirements of the application and the intended operating conditions when selecting the plastic material for gear racks. Understanding the performance implications of different plastic materials allows for the optimal choice that aligns with the desired functionality, durability, and overall performance of the gear rack.

China best Nylon Automatic Opening Gate Sliding Gate Plastic Gear Rack Nr6-C gear cycleChina best Nylon Automatic Opening Gate Sliding Gate Plastic Gear Rack Nr6-C gear cycle
editor by CX 2024-01-10