Product Description

Product Description

Products

Gear rack

Precision grade

DIN5, DIN6, DIN7, DIN8, DIN10

Material

C45 steel, 304SS, 316SS, 40CrMo, nylon, POM

Heat treatment

High frequency,Quenching/Carburization, Teeth hardened

Surface treatment

Zinc-plated,Nickle-plated,Chrome-plated,Black oxide or as you need

Application Machine

Precision cutting machines.

Lathes machine 

Milling machines

Grinders machine

Automated mechanical systems

Automated warehousing systems.

Produce Machine

CNC engine lathe

CNC milling machine

CNC drilling machine

CNC grinding machine

CNC cutting machines

Machining center

Workstyle

Execution is more preferred than empty talk.

Stock Gear Rack Type

Specification

Color

Helical gear rack

M1 15*15*1000mm

White

M1.5 19*19*1000mm

White

M2 24*24*1000mm

White

M3 29*29*1000mm

White

M4 39x39x1000mm

White

Spur gear rak

M1 15*15*1000mm

Black

Rack Assembly

To assemble connected racks more smoothly, 2 ends of a standard rack would add half tooth which is convenient for next half tooth of next rack to be connected to a complete tooth. The following drawing shows how 2 racks connect and tooth gauge can control pitch position accurately.

With regards to connection of helical racks, it can be connected accurately by opposite tooth gauge.

1. When connecting racks, we recommend lock bores on the sides of rack first, and lock bores by the sequence of the foundation. With assembling the tooth gauge, pitch position of racks can be assembled accurately and completely.

2. Last, lock the position pins on 2 sides of rack; the assembly is completed.
 

Test

Use Coordinate Measuring Machine to test the precision and hardness of gear rack and pinion

 

Packaging & Shipping

Small quantity: We will use carton box.

Big quantity: We will use wooden cases.

 

Company Profile

ZheJiang Haorongshengye Electrical Equipment Co., Ltd.

1. Was founded in 2008
2. Our Principle:

“Credibility Supremacy, and Customer First”
3. Our Promise:

“High quality products, and Excellent Service”
4. Our Value:

“Being Honesty, Doing the Best, and Long-lasting Development”
5. Our Aim:

“Develop to be a leader in the power transmission parts industry in the world”
 

6.Our services:

1).Competitive price

2).High quality products

3).OEM service or can customized according to your drawings

4).Reply your inquiry in 24 hours

5).Professional technical team 24 hours online service

6).Provide sample service

Main products

Machines

 

Exbihition

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Hobbing
Toothed Portion Shape: Spur Gear
Material: Steel, Nylon
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic gear rack

How do rack and pinion systems handle different gear ratios?

Rack and pinion systems can accommodate different gear ratios by adjusting the size and number of teeth on the gears. The gear ratio determines the relationship between the rotational motion of the pinion gear and the linear motion of the rack. Here’s a detailed explanation of how rack and pinion systems handle different gear ratios:

In a rack and pinion system, the pinion gear is a small gear with teeth that meshes with the rack, which is a long, straight bar with teeth along its length. As the pinion gear rotates, it translates rotational motion into linear motion along the rack. The gear ratio is defined as the ratio of the number of teeth on the pinion gear to the number of teeth on the rack. It determines how much linear motion the rack will produce for each revolution of the pinion gear.

To handle different gear ratios, the following approaches can be taken:

  • Varying the Number of Teeth: By changing the number of teeth on the pinion gear and the rack, different gear ratios can be achieved. Increasing the number of teeth on the pinion gear relative to the rack will result in a higher gear ratio, providing more linear motion per revolution of the pinion gear. Conversely, reducing the number of teeth on the pinion gear relative to the rack will yield a lower gear ratio, producing less linear motion per revolution of the pinion gear.
  • Modifying the Module and Pitch: The module and pitch of the gear teeth can also be adjusted to accommodate different gear ratios. The module refers to the size of the teeth, while the pitch determines the spacing between the teeth. Changing the module and pitch can alter the gear ratio without significantly affecting the overall dimensions of the rack and pinion system. This approach allows for more flexibility in achieving specific gear ratios while maintaining compatibility with existing system components.
  • Using Gear Reduction or Multi-Stage Systems: In certain applications where a wide range of gear ratios is required, gear reduction or multi-stage systems can be employed. Gear reduction involves incorporating additional gears between the pinion and the rack to achieve the desired gear ratio. Each additional gear stage introduces its own gear ratio, allowing for more precise control over the system’s overall gear ratio. This approach is commonly used in applications that require high precision or a wide range of motion control options.

The selection of a specific gear ratio depends on the application requirements, such as the desired linear speed, torque, or positional accuracy. The gear ratio determines the system’s speed and force transmission characteristics, as well as its ability to handle different loads. It is important to note that changing the gear ratio can affect other system parameters, such as backlash, efficiency, and system dynamics. Therefore, careful consideration and analysis of the application’s needs and trade-offs are necessary when selecting and adjusting the gear ratio in a rack and pinion system.

plastic gear rack

Can rack and pinion systems be integrated into robotic and automation equipment?

Yes, rack and pinion systems can be integrated into robotic and automation equipment, offering several advantages in terms of precision, reliability, and versatility. Here’s a detailed explanation:

  • Precision and Accuracy: Rack and pinion systems provide high precision and accuracy, making them suitable for applications that require precise linear motion control. The meshing of the rack and pinion gears allows for smooth and consistent movement, ensuring precise positioning and repeatability in robotic and automation equipment.
  • Load Capacity: Rack and pinion systems can handle a wide range of load capacities, making them versatile for various robotic and automation applications. By selecting appropriate materials and design parameters, rack and pinion systems can be customized to accommodate different loads, ensuring efficient and reliable operation even under heavy-duty conditions.
  • Compact Design: Rack and pinion systems have a compact design, which is advantageous in robotic and automation equipment where space is often limited. The linear nature of the rack allows for efficient packaging, making it easier to integrate the system into tight spaces without compromising functionality or performance.
  • Fast and Efficient Operation: Rack and pinion systems enable fast and efficient linear motion, making them suitable for applications that require quick and precise movements. The direct mechanical linkage between the rack and pinion gears allows for rapid acceleration and deceleration, facilitating high-speed operation in robotic and automation equipment.
  • Reliability and Durability: Rack and pinion systems are known for their reliability and durability, with the ability to withstand continuous use in demanding industrial environments. The materials used in rack and pinion components, such as hardened steel or engineering plastics, offer excellent wear resistance and mechanical strength, ensuring long service life and minimal maintenance requirements.
  • Easy Integration with Drive Systems: Rack and pinion systems can be easily integrated with various drive systems, such as motors or actuators, to enable automated motion control. The linear motion provided by the rack can be translated into rotary motion using appropriate drive mechanisms, allowing for seamless integration into robotic and automation equipment.

In conclusion, rack and pinion systems can be successfully integrated into robotic and automation equipment due to their precision, load capacity, compact design, fast operation, reliability, durability, and compatibility with drive systems. These features make rack and pinion systems a popular choice in a wide range of applications, including pick-and-place robots, CNC machines, packaging equipment, and many others that require accurate and efficient linear motion control.

plastic gear rack

What are the advantages of using rack and pinion for linear motion?

Rack and pinion systems offer several advantages when it comes to achieving linear motion. These mechanisms are widely used due to their efficiency, precision, and reliability. Here’s a detailed explanation of the advantages of using rack and pinion for linear motion:

  • High Efficiency: Rack and pinion systems are known for their high efficiency in converting rotational motion into linear motion. The meshing of the teeth on the rack and pinion allows for a direct transfer of power, minimizing energy losses and ensuring efficient motion conversion.
  • Precise Positioning: Rack and pinion mechanisms provide precise positioning capabilities. The teeth on the rack and pinion allow for accurate and repeatable linear motion, making them suitable for applications that require precise positioning, such as CNC machines, robotics, and automated systems.
  • Smooth and Controlled Motion: Rack and pinion systems offer smooth and controlled linear motion. The engagement between the teeth of the rack and pinion ensures a continuous and stable transfer of motion, resulting in smooth and reliable movement without backlash or play.
  • Compact Design: Rack and pinion mechanisms have a compact design, making them suitable for applications with space constraints. The linear motion is achieved along the length of the rack, allowing for a linear displacement without the need for additional mechanisms or complex setups.
  • Cost-Effective: Rack and pinion systems are often cost-effective compared to other linear motion mechanisms. They have a relatively simple design and can be manufactured using common materials, which contributes to their affordability and widespread availability.
  • High Load Capacity: Rack and pinion systems can handle high load capacities. The teeth on the rack and pinion distribute the load evenly, allowing for the transmission of substantial forces and enabling the handling of heavy loads in various applications.
  • Durable and Reliable: Rack and pinion mechanisms are known for their durability and reliability. When properly designed and maintained, they can withstand heavy use, harsh environments, and demanding operating conditions, ensuring long-term functionality and minimal downtime.
  • Wide Range of Applications: Rack and pinion systems have a wide range of applications across different industries. Their versatility makes them suitable for use in automotive steering systems, CNC machines, robotics, elevators, stage equipment, printing machinery, and many other mechanical systems.

These advantages make rack and pinion systems a popular choice for achieving linear motion in various applications. Whether it’s for precision positioning, efficient power transmission, or smooth motion control, rack and pinion mechanisms offer numerous benefits that contribute to their widespread use.

China Hot selling M2 Milled Teeth Helical Rack and Pinion for CNC raw gearChina Hot selling M2 Milled Teeth Helical Rack and Pinion for CNC raw gear
editor by CX 2024-04-17