Product Description

About us

ZheJiang CHINAMFG Auto Parts Co., Ltd. is a company specializing in the production and processing of steering gear assembly and other products, with a complete and scientific quality management system. The integrity, strength and product quality of ZheJiang CHINAMFG Auto Parts Co., Ltd. have been recognized by the industry. Welcome friends from all walks of life to visit, guide and business negotiation.

Product Description

45510-12361 electric steering rack and pinion for CHINAMFG Rumion

product name WT-1015 steering rack and pinon
brand  WOTIAN
Fitment Toyota Rumion ZRE152 2009-2015
Xihu (West Lake) Dis. drive  Right hand drive
OE number 45510-12361
quality 100% tested
warranty 12 months
Packing neutral packing/customizable
Delivery Time within 7 business days
Payment L/C,T/T,Western Union

 

 

 

1,Are you factory?

Yes,We are professional factory of steering racks.
 

2. Do you have neutral packing?
Yes, we have neutral packing ,or depends on customer’s require.

3. How long times guarantee of your product?
As general, 12 months
Electronic product, 6 month guarantee.

4. What could you do if customer return good?
Change a new one, or customer send it back to us and we return money.

5. How long for delivery time after order paid?
As usual, all products are in stock, 3-10 days. If not in stock, need more days.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 12 Months
Type: Steering Gears/Shaft
Material: Aluminum Steel Rubber
Certification: ISO
Standard: Standard
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic gear rack

How does the design of the rack and pinion affect its performance?

The design of the rack and pinion plays a crucial role in determining its performance characteristics and overall effectiveness. Various design factors influence the functionality, efficiency, and reliability of the rack and pinion system. Here’s a detailed explanation of how the design aspects affect the performance of a rack and pinion:

  • Tooth Profile: The tooth profile of the rack and pinion has a significant impact on the system’s performance. Different tooth profiles, such as straight, helical, or involute, offer varying benefits in terms of load distribution, efficiency, backlash reduction, and quiet operation. The selection of the tooth profile is based on factors such as the application requirements, load capacity, speed, and desired smoothness of motion.
  • Module and Pitch: The module and pitch of the rack and pinion refer to the size and spacing of the teeth. These parameters affect the system’s ability to transmit forces efficiently and accurately. A finer module and pitch provide smoother motion and higher precision but may have limitations in terms of load capacity. Coarser module and pitch are suitable for higher load applications but might result in slightly rougher motion.
  • Material Selection: The choice of materials for the rack and pinion is critical for performance and durability. The materials need to have sufficient strength, wear resistance, and fatigue resistance to withstand the operating conditions and loads. Common materials used for rack and pinion include steel alloys, stainless steel, and specialized alloys. The selection depends on factors such as load requirements, environmental conditions, and the desired service life of the system.
  • Lubrication: Proper lubrication is essential for optimal performance and longevity of the rack and pinion system. The design should facilitate efficient lubricant distribution to minimize friction, wear, and heat generation. Lubrication considerations include factors such as the lubricant type, method of application, and frequency of maintenance. Inadequate lubrication can lead to increased friction, reduced efficiency, and premature failure of the system.
  • Backlash Control: Backlash refers to the play or clearance between the teeth of the rack and pinion. The design should aim to minimize backlash to ensure accurate and precise motion. Backlash can be controlled through various design features, such as tooth modifications, preloading mechanisms, or anti-backlash devices. Minimizing backlash is crucial in applications that require high positional accuracy and repeatability.
  • Mounting and Alignment: The design should consider proper mounting and alignment of the rack and pinion system. Accurate alignment ensures smooth and efficient power transmission, reduces wear, and minimizes the risk of premature failure. The design should incorporate features that facilitate easy and precise mounting, such as alignment guides, mounting holes, or adjustable components.
  • Load Capacity and Stiffness: The design should be optimized to handle the anticipated load capacity and provide sufficient stiffness to resist deflection or deformation under load. Factors such as the size and cross-section of the rack, tooth geometry, and material selection influence the system’s load-bearing capability and overall rigidity. A well-designed rack and pinion should maintain stability and accuracy, even under high loads.
  • Noise and Vibration: The design should address noise and vibration considerations to ensure smooth and quiet operation. Features such as tooth profile modifications, surface treatments, or dampening mechanisms can be incorporated to reduce noise and vibration levels. This is particularly important in applications where noise reduction is crucial, such as precision equipment or noise-sensitive environments.

By carefully considering these design factors, engineers can optimize the performance of rack and pinion systems for specific applications. The appropriate design choices lead to improved efficiency, accuracy, durability, and overall reliability of the rack and pinion, enhancing its performance in various industrial and mechanical systems.

plastic gear rack

Can rack and pinion mechanisms be used for both rotary and linear motion?

Yes, rack and pinion mechanisms can be utilized for both rotary and linear motion. The primary function of a rack and pinion system is to convert rotational motion into linear motion or vice versa. Here’s a detailed explanation:

When a pinion gear, which is a small gear with teeth, meshes with a straight bar called a rack, it enables the transformation of rotary motion into linear motion. As the pinion gear rotates, it causes the rack to move linearly along its length. This linear motion can be utilized in various applications, such as in steering systems, linear actuators, or machine tools.

Conversely, a rack and pinion mechanism can also convert linear motion into rotary motion. In this case, the linear movement of the rack is used to rotate the pinion gear. This configuration is often employed in applications where linear force or displacement needs to be translated into rotational motion, such as in power steering systems or rotary indexing mechanisms.

The versatility of rack and pinion mechanisms lies in their ability to efficiently transmit motion and power in both directions. The system’s simplicity and mechanical advantage make it suitable for a wide range of applications requiring precise positioning, high force transmission, or smooth motion control.

It is important to note that the specific design and implementation of a rack and pinion system may differ depending on whether it is intended for rotary-to-linear or linear-to-rotary motion conversion. Factors such as the size and shape of the rack and pinion components, the gear ratio, and the supporting structure may vary accordingly. However, the fundamental principle of converting rotational and linear motion remains the same.

Overall, rack and pinion mechanisms offer a versatile solution for converting motion between rotary and linear forms, making them widely used in numerous industrial, automotive, and mechanical applications.

plastic gear rack

In which industries are rack and pinion systems commonly used?

Rack and pinion systems find extensive use in various industries where precise linear motion is required. These mechanisms are valued for their efficiency, reliability, and ability to convert rotational motion into linear motion. Here’s a detailed explanation of the industries in which rack and pinion systems are commonly used:

  • Automotive Industry: Rack and pinion systems are widely employed in the automotive industry for steering systems. They are used in passenger cars, commercial vehicles, and other automotive applications to provide smooth and responsive steering control.
  • Machinery and Manufacturing: Rack and pinion systems are commonly found in machinery and manufacturing applications. They are utilized in CNC machines, industrial automation systems, packaging machinery, material handling equipment, and assembly line systems to enable precise linear motion for various processes.
  • Robotics and Automation: Rack and pinion systems play a crucial role in the robotics and automation industry. They are used in robotic arms, manipulators, joint mechanisms, and linear actuators to provide controlled linear motion for tasks such as lifting, extending, and positioning.
  • Construction and Infrastructure: Rack and pinion systems are utilized in the construction and infrastructure sectors. They are commonly found in construction machinery like cranes and lifts, enabling vertical movement and precise positioning of heavy loads.
  • Entertainment and Stage: Rack and pinion systems are widely used in the entertainment industry, particularly in stage and theater equipment. They are employed in moving platforms, scenery automation, and lifting mechanisms to facilitate controlled and smooth movement during performances.
  • Printing and Packaging: Rack and pinion systems are commonly utilized in the printing and packaging industry. They are found in digital printers, large-format plotters, and packaging machinery, providing the necessary linear motion for accurate printing and packaging processes.
  • Transportation and Logistics: Rack and pinion systems are employed in transportation and logistics applications. They are used in elevators, escalators, and material handling systems, enabling vertical movement, efficient transportation, and precise positioning of goods and people.
  • Medical and Healthcare: Rack and pinion systems find application in the medical and healthcare industry. They are used in medical devices, hospital equipment, and diagnostic machinery, providing controlled linear motion for tasks such as patient positioning and sample handling.
  • Agriculture and Farming: Rack and pinion systems are utilized in the agriculture and farming sector. They can be found in agricultural machinery like harvesters and sprayers, facilitating controlled linear motion for various farming processes.

These are just a few examples of industries where rack and pinion systems are commonly used. Their versatility, precision, and reliability make them suitable for a wide range of applications that require linear motion conversion.

China factory 45510-12361 Electric Steering Rack and Pinion for CZPT Rumion cycle gearChina factory 45510-12361 Electric Steering Rack and Pinion for CZPT Rumion cycle gear
editor by Dream 2024-04-22