Product Description

OEM auto hydraulic power steering rack pinion for CHINAMFG RAV4 hydraulic 44250-42571 44250-421-3 8-97946130-1      

more reference car model
This part is compatible with 16 vehicle(s).

Notes
Important part details
Year Make Model Trim Engine
Power Steering 2000 Toyota RAV4 Base Sport Utility 2-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated
Power Steering 2000 Toyota RAV4 Base Sport Utility 2-Door ELECTRIC
Power Steering 2000 Toyota RAV4 Base Sport Utility 4-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated
Power Steering 2000 Toyota RAV4 Base Sport Utility 4-Door ELECTRIC
Power Steering 1999 Toyota RAV4 Base Sport Utility 2-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated
Power Steering 1999 Toyota RAV4 Base Sport Utility 2-Door ELECTRIC
Power Steering 1999 Toyota RAV4 Base Sport Utility 4-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated
Power Steering 1999 Toyota RAV4 Base Sport Utility 4-Door ELECTRIC
Power Steering 1998 Toyota RAV4 Base Sport Utility 2-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated
Power Steering 1998 Toyota RAV4 Base Sport Utility 2-Door ELECTRIC
Power Steering 1998 Toyota RAV4 Base Sport Utility 4-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated
Power Steering 1998 Toyota RAV4 Base Sport Utility 4-Door ELECTRIC
Power Steering 1997 Toyota RAV4 Base Sport Utility 2-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated
Power Steering 1997 Toyota RAV4 Base Sport Utility 4-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated
Power Steering 1996 Toyota RAV4 Base Sport Utility 2-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated
Power Steering 1996 Toyota RAV4 Base Sport Utility 4-Door 2.0L 1998CC 122Cu. In. l4 GAS DOHC Naturally Aspirated

Reference packing way:
neutral plastic bag 4B0145155M 6N0145157 8E0145156S 8D0145156F 7L6422154 7L8422154ES 4B0145155R 6MO145157 8D0145156KX 8D0145156FX 7L6422154A 4B0145155RX 1J0422154B 8K0145156R 8D0145156K 7L6422154B 8001705 BMW           3241457171 32411094965 32411095845 32416761876 6777321 32411095750 6769887 1094965 32416753274 6761876 3 32416756158 4039954 32411092742 32416756582 6754172 32414038768 32416756175 32414039954 1094098 32416760034 1095748 32416766215 32416798865 32416769887 157149 32416750423 6756575 32416769768 32416756737 457171 1 0571 40 32416760036 32416754172 32416777321 676988704 32414571151 1092741 6760036 32411095748 32416762158 32416763557 32416768155 1092742 6750423 3241157155 32416766071 32416766051 32411092603 32411094098 67504239 32416756575 32416757913 32416763556 1092604 3241157149 6760034 3241345716 32416766702 7696974122 32411092604 32411092741 2228979 4 0571 79 32416757840 32412229037 1092603 3 2229037 4038768 32416757914 6769768 32411092433 32411094089 32412228979 6766215 32411092898 3241157148 BUICK           2657169 88963473         CHEVROLET           96837813 96230842 5491881 96626762 96626764 96451970 9033005 96255516 96985600 95977413 96497571 96834907 7JK0600150 25953816 96535224 96298852 25953817 96550113 96837812 96626557         CITROEN           4007.CJ 9636425980 4007.HR 4007.N4 4007.EF 4007.VR 9631411580 4007.0F 4007.5C 4007.V9 4007.V6 9654342980 9684650880 4007.61 4007.6C 4007.93 4007.WP 140571680 96314111580 4007.Z2 4007.P0 9614429080 4007EF 4007.KL 2657136 4007.TQ 4007.81 9614428880 4007V6 9624659580 26064217 4007.WL 4007.W3 9614428980 9634816080 965645710 4007.4E 4007.JC 4007.V8 4007.JF 9638931980 9636086680 9631914180 4007.H0 9631923680 4007.2A 4007.2C 4007.7A 4007.3C 9659820880 9612206880 4007.AN 4007.JH 4007.6A 4007.3E 9647790780 9642495380 9642495180 4007.LS 96144290 4007.4C 4007.KX 9642495480 9642495280 4007.AT 4007.57 4007.4E 4007.V7 4007.Q4 9638380080 9631923580 4007.JJ 4007.7E 4007.9 4007.A3 4007.KK 9632335380 4007.AL 4007.JG 7847017 4007000  CSP72102GS 4007.EA 4007.HY 4007.KY 9120146480 4007.03 4007.5E 9617753380 4007.LP 9151454080 9622072080         DAEWOO           95216830 9571213 96535224 96834917 5948571   DODGE           68034332AB           FIAT           6 0571 18 55186441 46406954 7765710 1477396080 77 0571 5 46524141 46764513 46413323 963657180 4007.CJ 46459346 46473841 46401703 7668650 4007CJ 46541004 4641 0571 46410956 46479292 9645464980 55186442 46436958 7707425 46408075 9626552081 46413324 46475018 40571 4007.J1 71788931 7746143 4007.TA 46406957 1400980180 9615918188 1461315080 46413332 46401704 FORD           91AB 3A674 CA 90VB3A674DA 7M0145157RX 77571944 4638902 1332457 6483568 6787424 95VW3A674EB 770571308 EF9532650B 1357617 4070364 6588779 157160 770571156 YC1C3A674GA 1363849 6170134 92VB3A674AA 6718228 7700845716 1569693 1366465 XS6C-3A674-KAAM 7M0145157AA 90VB33674CB 77571157 6C113A696AJ 1426694 95AB-3A674-BA 98VW3A674AA 90VB3A674AC 77571160 1141655 1495668 91AB-3A674-BA 1113038 1660613 4515540 1227887 1666079 1225584 1358571 1361818 2S6C3A696CL 2S6C3A696CC 2S6C3A696CB 1357641 1358497 1473440 433571 2S6C3A696CD 2S6C3A696CE 1357997 1371089 1C1C3A696AC RM2S6J3A674CE 2S6C3A696CF 2S6C3A696CG 1C1C3A696AA 1C1C3A696AB 1C1C3A696AE 1M513A696CB 2S6C3A696CH 2S6C3A696CK 1M513A696CC 1S6C3A674AA 1S6C3A674AB 1S6C3A674AC 1S7C3A674CA 1S7C3A674CB 3554493 395715 4032436 4042571 457164 4048773 4 0571 52 4056078 457183 457193 41 0571 3 41 0571 7 4121762 4123761 4153191 4178574 4376991 4386951 4511901 4533382 4691863 4796969 4797515 F7RC3A674BC F83C3A674CB RM1C13A696BB RM1C1J3A674BB RM1S6J3A674AB RM1M5J3A674CB RM1S7J3A674CB XS2C3A674AA XS4C3A696HB XS4C3A696HC XS6C3A674EA XS6C3A674EAAM XS8C3A674AAAM 3749551 F2RC3A674AB F4RC3A674GD F5RC3A674DC F7RC3A674DA 1358039 457147 F4RC3A674GA F5RC3A674CB F5RC3A674FA F7RC3A674EA 3571572 6789571 F5RC3A674GA F5RC3A674HA F6RC3A674CB F33C3A674DA 3049841 6483567 6778262 1648088 F83C3A674BB F83C3A674BA 6891391 86GB3A674EA 91AB3A674AA 91AB3A674BA 91VB3A674AA 92AB3A674AB 92АВ3А674АВ 95AB3A674BA 4147206 7145717 F4RC3A674AD 1638628 6185779 85GB3A674AD 1363848 1666077 87GB3A674AB 92BB3A674AA V85BB3A674AA 1357616 RM2S6J3A674BE 1366464 1495688 2S6C3A696BF 2S6C3A696BG 2S6C3A696BC 4330720 2S6C3A696BE 2S6C3A696BD F33C3A674BA 3751949 2S6C3A696BJ 357178 XS6C3A674DAAM F6RC3A674DC F33CA674BA 4147211 3751947 XS6C3A674CAAM XS6C3A674CA 3751817 F6RC3A674EA F6RC3A674DCAM 115571 1358056 RMXS6J3A674CA F6RC3A674BB 4032435 4153203 1233536 1255760 1358536 1364116 1373802 4571430 3664622 3838811 1M513A696BA 1M513A696BB 1M513A696BC 4 0571 90 RM1M5J3A674BB XS4C3A696NA XS4C3A696NB XS4C3A696NBAM XS6C3A674AA 2S6C3A696DC XS6C3A674AB XS6C3A674AC 1755033 2S6C3A696DA 2S6C3A696DD 4330726 1416165 1S7C3A696AJ 11 0571 4 1635632 137571 RM2S6C3A696DD F83C3D639AC 28145157 1534806 18571 6C113A671AB RM6C113A674AA 1S7C3K770AA 1853489 6C113A674AA 6C113A674AB 6C113A674AC BL3Z-3A696-A BG3T3A674AA           HONDA           56110-RNA-035     56110RNA035 56110-RAA-A01     56110RAAA01 56110-RFE-003    56110RFE003 56110-PNB-003   56110PNB003 56110PNBG01 56100-R40-A04    56100R40A04 56100 RNA A000 56110-RBB-E01       56110RBBE01 56110-RNA-A01    56110RNAA01 56110-RTA-003    56110RTA003 56110PNBG02 56110-RCA-A01   56110RCAA01 06531RNA000 56110-SDA       56110SDA 56110-RAA-A02    56110RAAA02 56110PNB307 56110PNBG04 56110PVJA01 56110-SNA        56110SNA 56110-RBA-E01      56110RBAE01 56110-PAA-A01    56110PAAA01 56110-PNB-A01     56110PNBA01 56110PNBG05 56110-P8F-AO2  56110P8FAO2 56110-PLA-013      56110PLA013 56110-PNB-G02    56110PNBG02 56110-PLA-571RM   56110PLA571RM 56110-PLA-571      56110PLA571 56110-S9A        56110S9A 56110-P8F-AO1   56110P8FAO1 56110PLA033          

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Three Years
Warranty: One Year
Type: Steering Gears/Shaft
Material: Aluminum
Certification: ISO, Ts16949
Automatic: Automatic
Customization:
Available

|

Customized Request

plastic gear rack

What safety considerations should be kept in mind when working with rack and pinion?

Working with rack and pinion systems requires careful attention to safety to prevent accidents and ensure the well-being of individuals involved. Here are some important safety considerations to keep in mind when working with rack and pinion:

  • Proper Guarding: Ensure that the rack and pinion system is properly guarded to prevent accidental contact with moving parts. Install appropriate barriers, shields, or enclosures to restrict access to the rack and pinion assembly, especially in areas where there is a risk of entanglement or pinch points.
  • Lockout/Tagout: Implement lockout/tagout procedures when performing maintenance, repair, or adjustment on the rack and pinion system. Lockout/tagout procedures involve isolating the power source and securing it with a lock or tag to prevent accidental energization or motion during work, protecting workers from unexpected movement or startup.
  • Proper Installation: Ensure that the rack and pinion system is installed correctly according to manufacturer guidelines and industry standards. Improper installation can lead to misalignment, instability, or premature failure, posing safety risks. Follow proper procedures for mounting, alignment, and securing of the rack and pinion assembly.
  • Maintenance and Inspection: Regularly inspect and maintain the rack and pinion system to ensure its proper functioning and identify any potential safety hazards. Check for signs of wear, damage, or loose components. Lubricate the system as recommended by the manufacturer to maintain smooth operation and prevent excessive friction or overheating.
  • Load Limitations: Adhere to the load limitations specified by the manufacturer. Overloading the rack and pinion system can lead to excessive stress, premature wear, or failure, potentially resulting in accidents. Consider factors such as weight, distribution, and dynamic forces when determining the appropriate load for the system.
  • Training and Awareness: Provide adequate training to personnel who will be working with or around the rack and pinion system. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Promote awareness of the risks associated with the system and encourage a safety-conscious culture in the workplace.
  • Environmental Considerations: Take into account the environmental conditions in which the rack and pinion system operates. Factors such as temperature, humidity, corrosion, or exposure to hazardous substances may affect the system’s performance and safety. Use appropriate materials, coatings, or protective measures to mitigate potential risks.
  • Emergency Stop: Install an emergency stop mechanism that allows for immediate shutdown of the rack and pinion system in case of emergencies or hazardous situations. Clearly mark and communicate the location of the emergency stop controls to ensure quick and easy access when needed.

It is essential to consult the manufacturer’s documentation, safety guidelines, and applicable regulations when working with rack and pinion systems. By following proper safety practices, implementing appropriate safeguards, and promoting a safety-focused mindset, the risks associated with working with rack and pinion systems can be minimized, creating a safer working environment.

plastic gear rack

How do rack and pinion systems contribute to precise motion control?

Rack and pinion systems play a crucial role in achieving precise motion control in various applications. The inherent design and characteristics of rack and pinion mechanisms contribute to their ability to provide accurate and reliable motion control. Here’s a detailed explanation:

1. Direct and Efficient Power Transmission: Rack and pinion systems offer direct power transmission, meaning there are no intermediate components or linkages between the input and output. This direct connection allows for efficient power transfer without significant energy losses. As a result, the motion control system can respond quickly and accurately to input commands, enabling precise control over the position, speed, and acceleration of the driven load.

2. High Mechanical Advantage: Rack and pinion systems provide a mechanical advantage, especially in applications where linear force or torque needs to be converted. The gear ratio of the system determines the mechanical advantage, allowing for amplification or reduction of the input force or torque. By adjusting the gear ratio, the system can be optimized to achieve the desired level of precision and force transmission. The mechanical advantage enhances the system’s ability to overcome friction, resist external disturbances, and maintain positional accuracy.

3. Minimal Backlash: Backlash refers to the slight clearance or play between the teeth of the gears in a mechanical system. Rack and pinion systems are designed to minimize backlash, ensuring precise and repeatable motion control. The tight engagement of the gear teeth in a rack and pinion mechanism reduces backlash, resulting in minimal lost motion and improved accuracy. This characteristic is particularly important in applications that require precise positioning, such as CNC machines, robotics, or optical equipment.

4. Smooth and Continuous Motion: Rack and pinion systems can provide smooth and continuous motion due to the constant contact between the gear teeth. The teeth on the pinion gear mesh with the teeth along the rack’s length, resulting in a continuous transfer of motion. This continuous contact helps to eliminate jerks, vibrations, or hysteresis that could affect the precision of the motion control system. The smooth and continuous motion is vital for applications where precise speed control or smooth trajectory tracking is required.

5. High Positional Accuracy: Rack and pinion systems excel at achieving high positional accuracy. The linear nature of the motion provided by the rack allows for precise control over the position of the driven load. Combined with low backlash, the system can accurately maintain the desired position without significant deviation. This level of positional accuracy is critical in applications such as CNC machining, 3D printing, or metrology, where tight tolerances and precise positioning are essential.

6. Scalability and Flexibility: Rack and pinion systems offer scalability and flexibility, making them suitable for a wide range of applications. They can be designed and implemented in various sizes and configurations to accommodate different load capacities, travel distances, and speed requirements. The modular nature of rack and pinion systems allows for easy integration into different mechanical systems, making them adaptable to diverse motion control applications.

In conclusion, rack and pinion systems contribute to precise motion control through their direct power transmission, high mechanical advantage, minimal backlash, smooth and continuous motion, high positional accuracy, and scalability. These characteristics make rack and pinion mechanisms a popular choice in numerous industries, including robotics, automation, manufacturing, and automotive, where precise and reliable motion control is vital.

plastic gear rack

What are the key components of a rack and pinion mechanism?

A rack and pinion mechanism consists of several key components that work together to convert rotational motion into linear motion. Here’s a detailed explanation of the key components of a rack and pinion mechanism:

  • Rack: The rack is a linear gear with teeth along its length. It is a long, straight bar that serves as the linear motion component of the mechanism. The rack is often made of metal or plastic and is designed with precision to ensure smooth engagement with the pinion.
  • Pinion: The pinion is a small gear with teeth that mesh with the teeth on the rack. It is the rotational motion component of the mechanism. The pinion is typically mounted on a shaft and is connected to a rotary motion source, such as an electric motor or a manual crank.
  • Teeth: The teeth on both the rack and the pinion are integral to the mechanism’s operation. The teeth of the pinion mesh with the teeth on the rack, allowing for the transfer of motion. The tooth profile and spacing are crucial for ensuring smooth and efficient engagement between the rack and pinion.
  • Bearing Support: To ensure smooth and reliable operation, a rack and pinion mechanism often incorporates bearing support. Bearings are used to support the pinion shaft, reducing friction and allowing for smooth rotation. Bearings may also be used to support the rack, depending on the specific design and application.
  • Guides: Guides are used to guide and support the linear motion of the rack. They help maintain alignment and prevent lateral movement or misalignment during operation. Guides can be in the form of rails, tracks, or other structures that keep the rack in the desired path of motion.
  • Housing or Mounting Structure: A rack and pinion mechanism may include a housing or mounting structure to provide support, stability, and proper alignment of the components. The housing or structure ensures that the rack and pinion remain securely in place, maintaining the integrity of the mechanism during operation.
  • Additional Components: Depending on the specific application, a rack and pinion mechanism may incorporate additional components. These can include lubrication systems to reduce friction and wear, position sensors for feedback and control, and protective covers or enclosures to shield the mechanism from dust, debris, or environmental elements.

Each of these components plays a vital role in the operation of a rack and pinion mechanism, enabling the conversion of rotational motion to linear motion with precision and efficiency.

China manufacturer CZPT OEM Auto Hydraulic Power Steering Rack Pinion for CZPT RAV4 Hydraulic 44250-42020 44250-42100 44250-42110 4425042020 4425042100 4425042110 45510-1d580 with Good qualityChina manufacturer CZPT OEM Auto Hydraulic Power Steering Rack Pinion for CZPT RAV4 Hydraulic 44250-42020 44250-42100 44250-42110 4425042020 4425042100 4425042110 45510-1d580 with Good quality
editor by Dream 2024-04-24